IMA Event Log Format
Ken Goldman
kgoldman@us.ibm.com
February 5, 2020
© Copyright IBM Corp., 2021
21.
Introduction

31.1.
Enabling IMA

41.2.
IMA Policies

41.3.
IMA Log Verification

52.
IMA Event

52.1.
PCR Index

52.2.
Template Hash

62.2.1.
PCR Extend Type 1 (zero pad)

62.2.2.
PCR Extend Type 2 (hash)

62.3.
Template Name Length

62.4.
Template Name

72.5.
Template Data Length

72.6.
Template Data

73.
Template Data

83.1.
d-ng

83.1.1.
Hash Length

83.1.2.
Hash Algorithm

83.1.3.
File Data Hash

83.2.
n-ng

83.2.1.
File Name Length

93.2.2.
File Name

93.3.
sig

93.3.1.
Signature Length

93.3.2.
Signature Header

93.3.2.1.
Signature Type

93.3.2.2.
Signature Version

103.3.2.3.
Hash Algorithm

103.3.2.4.
Public Key Identifier

103.3.3.
Signature Size

103.3.4.
Signature

103.4.
buf

113.4.1.
.ima

113.4.2.
.builtin_trusted_keys

113.4.3.
blacklisted-hash

113.4.4.
boot command line ???

113.5.
d-modsig

123.6.
modsig

1.
Introduction
This document is unofficial. Please send contributions and corrections, or links to a better document.

This details the IMA event log format, field by field.
Multi-byte integer values (PCR index, length, etc.) are in the byte order of the host where the event log was created. The sender can convert to network byte order before transmission, as long as the values are not hashed. For values that are hashed, the receiver must know the byte order.
Sizes and lengths are always in bytes.

Fields are always concatenated with no padding.

Question: What is the maximum number of event records?

1.1. Enabling IMA

IMA can be enabled on the Linux boot command line or by editing the grub.cfg configuration file.
Enabling IMA uses these formats:

	String
	Supported as of kernel

	ima_tcb
	2.6.31

	ima_policy=tcb
	4.10

	
	

	
	

	
	

	
	

	
	

	
	

IMA templates use these formats:

	Template
	String
	Supported as of kernel

	ima
	ima_template="ima"
	2.6

	ima-ng
	ima_template="ima-ng"
	3.13

	ima-ng
	ima_template_fmt= "d-ng|n-ng"
	3.13

	ima-sig
	ima_template="ima-sig"
	3.13

	ima-sig
	ima_template_fmt="d-ng|n-ng|sig "
	3.13

	
	
	

	
	
	

	
	
	

The --ima_canonical_fmt option possibly forces the event log to little endian on big endian machines.
Is this correct? Even for fields within the Template Data?

The location of the event log is:

TPM 1.2
/sys/kernel/security/tpm0/binary_bios_measurements
TPM 2.0
/sys/kernel/security/ima/binary_bios_measurements
1.2. IMA Policies

The IMA policy format is specified here.
https://en.opensuse.org/SDB:Ima_evm
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/ABI/testing/ima_policy

1.3. IMA Log Verification
An IMA verifier implementation should note several differences from verifying a pre-OS log. They occur because IMA measurements can occur during the attestation.
· An IMA event log append is not atomic with the TPM extend.
Since a TPM quote can intervene, the event log can have extra events. There will never be a missing quoted event because the append comes before the extend.
Further, an append-extend pair is atomic with other append-extend pairs, so the appends will never be out of order with the extends.
· A TPM quote is not atomic with a TPM PCR read.

A PCR read before or after a quote may not reflect the quoted PCR.

· IMA event logs are far larger than pre-OS logs.

While a pre-OS log may hold 50 events, an IMA log can hold 10K – 100K events.
For the above reasons, a verifier should consider the following recommendations.

1. The verifier should account for extra events.
Replay the event log until the quote matches and then discard extra events. Extra events are not a failure.
2. It is futile to read the IMA PCR (PCR 10) and send it to the verifier.

Since it is not atomic with the quote or the event log, a mismatch is not a failure.
Looping through quote / PCR read cycles until the quote matches the PCR read will lead to poor performance and perhaps timeouts, especially early when IMA is measuring many files.
3. Design for incremental attestations.

Until a reboot, the IMA event log receives only appends. Once the earlier measurements are verified, there is no need to verify them again. The verified PCR 10 value serves as state.

For a long lived platform, eventually most files will be measured and few or no new events need be processes.
2. IMA Event
An IMA event record has the following fields.
2.1. PCR Index

This is a 4-byte integer representing the PCR Index.

Note: The value is currently always 10.
2.2. Template Hash
This is normally a 20-byte SHA-1 hash of the Template Data field. It can also be all zeros.
Exception: For the 'ima' template name, the Template Hash is a SHA-1 hash of the File Data Hash field and the File Name padded with zero bytes to a length of 256 bytes. The File Name Length field is not hashed.

There is no associated length or descriptor.

There are currently two PCR extend schemes. This document calls them Type 1 and Type 2 because there is no defacto term in use.

2.2.1. PCR Extend Type 1 (zero pad)
· PCR SHA-1 Bank
If the Template Hash is not all zeros, it is used

directly in the extend operation.
If the Template Hash is all zeros, an all ones digest is extended.
· PCR SHA-256 Bank
The SHA-256 bank is extended with the SHA-1 value (the Template Hash or all ones) padded with 12 bytes of zero.
2.2.2. PCR Extend Type 2 (hash)
· PCR SHA-1 Bank

Same as Type 1.
· PCR SHA-256 (and other non SHA-1 banks)

If the Template Hash is not all zeros, the bank is extended with the hash of the Template Data field. See the exception in 2.2 Template Hash.
If the Template Hash is all zeros, the bank is extended with all ones to the length of the hash algorithm,
2.3. Template Name Length
This is a 4-byte integer representing the length of the Template Name field.

Question: What is the maximum length?
2.4. Template Name
This is a printable string representing the template name.

The string is NOT nul terminated. It is guaranteed to be printable.
For legal names, see section 3 Template Data.
2.5. Template Data Length

This is a 4-byte integer representing the length of the Template Data field.
Note that there is redundancy, in that the data fields are self-describing. This can be checked for consistency.

2.6. Template Data

See Section 3 Template Data for the contents of this field.

3. Template Data

Template data can have the following fields. Unless specified, each is preceded by a 4-byte length.
What happens if a field appears multiple times?
d
20-byte digest, SHA-1 or zero padded MD-5 (no length)

d-ng
hash algorithm + digest, file data hash. See 3.1 d-ng.
n
file name. See 3.2 n-ng.

(if > 255, removes path, leaves file name)
n'
file name within ima template, not nul terminated name
(if > 255, removes path, leaves file name)

cannot be used in custom template
n-ng

file name. See 3.2.2 n-ngFile Name.
sig

signature header + signature. See 3.3 sig.

buf

4 byte length + buffer. See 3.4 buf.
modsig

pkcs7 DER, appended signature. See 3.6 modsig.
d-modsig
d-ng, file data hash. See 3.5 d-modsig.
uuid

(undocumented)

pid

(undocumented)

ppid

(undocumented)

gid

(undocumented)

The predefined / built-in template names are (where | is the concatenation symbol)

ima

d | n'
ima-ng

d-ng | n-ng

ima-sig

d-ng | n-ng | sig

ima-buf
d-ng | n-ng | buf

ima-modsig
d-ng | n-ng | sig | d-modsig | modsig

3.1. d-ng

3.1.1. Hash Length

This is a 4-byte integer representing the combined length of the Hash Algorithm and File Data Hash fields. Note that the File Data Hash contains the two following fields, and those fields do not have explicit lengths.

3.1.2. Hash Algorithm

This is a nul terminated string representing the hash algorithm of the File Data Hash field. Two values are currently used:

· sha256:

· sha1:

Note this redundancy, which can be checked for consistency:

· The Hash Length minus the length of the Hash Algorithm field (including the nul terminator) yields the size of the File Data Hash.

· The length of a hash based on the Hash Algorithm yields the size of the File Data Hash.

3.1.3. File Data Hash

This is a hash of the file data that was used to compute the 3.3.4 Signature.

The length and hash algorithm are determined by the Hash Algorithm field.

3.2. n-ng

3.2.1. File Name Length

This is a 4-byte integer representing the length of the file name, including the nul terminator. The maximum value is MAXPATHLEN +1?
What is MAXPATHLEN? It can’t be the value at the attestor, because different attestors can have different values.

Note that there is often redundancy, in that the file name is nul terminated. This can be checked for consistency.

3.2.2. File Name

This is a (usually nul terminated) string representing the name of the file that was measured.
The length is determined by the File Name Length.

3.3. sig

3.3.1. Signature Length

This is a 4-byte integer representing the total length of the Signature Header and Signature fields. The value may be zero, indicating that those two fields are not present.

Under some conditions, this field may be empty.

What are those conditions? Does this mean the Signature Size or the Signature Length?
3.3.2. Signature Header

This field is fixed at 9 bytes, consisting of 5 fields.

3.3.2.1. Signature Type

This is a 1-byte field. The value is 0x03 (EVM_IMA_XADDR_DIGSIG).
Question: What are the valid values and meanings. How does the type affect the other fields.
Question: Is the signature algorithm encoded here, or anywhere, or is RSA assumed?

3.3.2.2. Signature Version

This is a 1-byte field. The value is 0x02.

Question: What are the valid values and meanings. How does the version affect the other fields.
3.3.2.3. Hash Algorithm

This is a 1-byte field representing the hash algorithm used for the File Data Hash. The legal values are:
· 0x02: SHA-1

· 0x04: SHA-256
Note that there is redundancy, in that this field must be consistent with the Hash Algorithm field on the Template Data.

3.3.2.4. Public Key Identifier

This is a 4-byte field that identifies the public key. It is the last 4 bytes of the key's X.509 certificate Subject Key Identifier.
3.3.3. Signature Size

This is a 2-byte integer representing the size of the Signature field.
Question: What are the legal values? 128 and 256 bytes (1024 and 2048 bits)? Others?

3.3.4. Signature

This field represents the signature over the File Data Hash using the key specified by the Public Key Identifier and the hash algorithm represented by the (two) Hash Algorithm fields.
Under some conditions, this field may be empty.

What are those conditions? Does this mean the Signature Size or the Signature Length?
3.4. buf

This field contains a variable length buffer whose contents is determined by the 3.2.2 File Name field. It is used to display the kexec boot command line and certificates loaded on different keyrings.
What happens if the file name field is absent?

What is the maximum length of this field?

Is this field ‘critical’ in the X.509 sense. I.e., should a verifier ignore or reject an event if buf is present but the file name is unsupported?
3.4.1. .ima

If the file name is .ima, buf is a DER encoded X.509 IMA certificate.

3.4.2. .builtin_trusted_keys
If the file name is .builtin_trusted_keys, , buf is a DER encoded X.509 built-in certificate.

3.4.3. blacklisted-hash
If the file name is blacklisted-hash, ???
What is the contents of buf? A sample had a 32-byte value which appeared to be a hash. If so, where does the hash algorithm come from? d-ng? What if there is no d-ng field?
Does this file name have a dot prefix?

3.4.4. boot command line ???

What is the actual file name string? Does it have a dot prefix?
If the file name is ???, buf indicates the boot command line string.

Is the is the same as the output of /proc/cmdline.

3.5. d-modsig
What is a good name for this field?

d-modsig is a file data hash. It is similar to 3.1 d-ng. The hash input omits the appended modsig signature. It is used to verify the appended signature.
d-modsig (the hash) and modsig (the signature) are a pair. They must be either both present or both absent.

Under some conditions, this field may be empty.

What are those conditions? Possibly if there is no signature, a zero length signature, or appended signature, or …
3.6. modsig

What is a good name for this field?

modsig is a PKCS#7 DER encoding of the appended signature. See the CMS document as in RFC 5652.

Under some conditions, this field may be empty.

What are those conditions?

[image: image1.png]

[image: image2.png]

[image: image3.png]

Page 6

