
 Page 1

Attestation Protocols

Ken Goldman

kgoldman@us.ibm.com

December 7, 2017

mailto:kgold@watson.ibm.com

 Page 2

1. Introduction ... 5

2. Provisioning Goals and Attack Model 6

3. Provisioning Process ... 7

3.1. Client Request ... 8
3.2. Server Challenge ... 9

3.3. Client Response .. 11
3.4. Server Acknowledge ... 12
3.5. Epilogue .. 13

4. Quote Goals and Attack Model 15

5. Quote Process .. 16

5.1. Client requests a nonce ... 17
5.2. Server supplies nonce and PCR selection ... 17

5.3. Client returns the quote data ... 17

5.4. Server requests an event log ... 18
5.5. Client returns the event log ... 18
5.6. Server acknowledge .. 19

 Page 3

 Page 4

 Page 5

1. Introduction

This paper describes the provisioning process for an attestation signing key, between the

machine performing the attestation (the client) and the attestation verifier (the server).

It goes on to describe the attestation quote protocol.

 Page 6

2. Provisioning Goals and Attack Model

The server wants to install a client quote signing public key that it trusts to create valid

attestation quote signatures.

The client, as an attacker, wants to convince the server to install an attestation key whose

private part is under complete control of the client, so that the client can forge quote

signatures.

The server trusts itself but does not trust the client software. The server contains TPM

vendor root certificates that it can use to validate vendor provisioned TPM endorsement

key (EK) certificates. These vendor root certificates are the root of trust for the

provisioning process.

The process protects against

• client attacks on the protocol

The process does not protect against

• the client providing an inaccurate host name

• a client that is not is authorized to be provisioned

• a client connecting to an incorrect server

 Page 7

3. Provisioning Process

The process consists of four steps:

• client request

• server challenge

• client response

• server certificate

 Page 8

3.1. Client Request

1. The client creates its SRK primary storage key if it does not already exist.

The TPM2_CreatePrimary() command generates a repeatable key pair when the

identical template is used.

2. The client creates an attestation signing key under (encrypted with, wrapped by)

the SRK.

3. The client reads the TPM vendor EK (endorsement key) certificate from TPM NV

space.

4. The client sends the enrollment request to the server. The request consists of:

• command - enrollrequest

• hostname - client hostname

• ekcert - EK certificate (X.509 DER format)

• public - attestation key public part (TPMT_PUBLIC structure)

 Page 9

3.2. Server Challenge

The server receives the enrollment request, with a host name, EK certificate, and

attestation public key. The client claims that the certificate and key come from an

authentic TPM. The server trusts neither claim.

1. The server verifies that the host name has not already been successfully enrolled.

2. The server validates the EK certificate against its list of TPM vendor root

certificates.

If the certificate is valid, the server trusts that the certificate came from an

authentic TPM, but not that it came from the client's TPM.

3. The server extracts the EK public key from the EK certificate.

4. The server validates the attestation public key properties: fixedTPM, fixedParent,

sensitiveDataOrigin, sign, restricted, not decrypt, RSASSA algorithm, SHA-256,

and RSA 2048-bit with the default exponent.

These are the properties required of an attestation key: it was generated on a

TPM, cannot be duplicated off the TPM, and it is restricted to sign only TPM

generated data such as a quote.

The server does not trust that this key came from the client's TPM, as it has

received only a public part.

5. The server generates a random challenge.

6. The server loads (TPM2_LoadExternal) the public attestation key, using its TPM

to calculate the Name. The Name is a hash of the public area.

7. The server loads the client EK public key, extracted from the EK certificate.

8. The server runs TPM2_MakeCredential(), supplying the EK handle, the

challenge, and the attestation key Name.

TPM2_Makecredential() links together the challenge and the attestation key

Name, then encrypts the result with the EK public key. This becomes the server

challenge to the client.

Steps 6, 7 and 8 use no TPM secrets. The calculations could be performed

completely in software. However, they are complex. It is easier for the

implementation to use a TPM (perhaps a software TPM) than to rewrite and

maintain another version.

 Page 10

9. The server stores the hostname and certificate in its "machines" database table.

However, it marks the row invalid, since the server still does not know whether

the EK certificate or the attestation key came from the client's TPM.

10. The server sends the response to the enrollment request:

• response - enrollrequest

• credentialblob - the make credential output

• secret - challenge encrypted with the client EK public key

 Page 11

3.3. Client Response

The client receives the challenge, the server response to the enrollment request.

1. The client (re)creates the EK using either the default EK template or the EK

template and nonce from the TPM NV.

2. The client loads its previously saved attestation key.

3. The client runs the TPM2_ActivateCredential() command, specifying the

credentialBlob, the encrypted secret, the EK handle, and the attestation key

handle.

Use of the EK requires a policy session with a policy secret against the

endorsement authorization.

4. The client TPM validates the authorization: the EK policy for the EK and an

empty password for the attestation key.

5. The client TPM (simplified) validates the integrity of the credentialBlob against

the EK.

6. The client TPM validates that the Name of the loaded attestation key matches that

in the credentialBlob.

This check prevents the client from sending an attestation key to the server

different from the one generated by the TPM.

7. The client TPM then decrypts secret using the EK private key to recover the

challenge.

This step proves that the client was using an authentic TPM to generate the

attestation key.

8. The client sends a command to the server, requesting enrollment of the certificate.

• command - enrollcert

• hostname - the client host name

• challenge - the decrypted challenge

 Page 12

3.4. Server Acknowledge

1. The server matches the challenge certificate to the challenge that the server

generated.

This proves that the client could decrypt the challenge. The client could only do

that if it had the EK private key (known to be from an authentic TPM) and an

attestation key with the server-validated properties (because the client TPM

matches the Name).

The match is important. It is not enough to detect a valid attestation public key,

since the client could try to install a counterfeit.

2. The server constructs an X.509 certificate for the attestation public key, and signs

it with its privacy CA key. It uses the client hostname as the subject CN -

common name.

3. The server stores the certificate in the database.

4. The server sends the certificate to the client.

• response - enrollcert

• akcert - certificate in PEM format

After the server response, the client saves the attestation key public and private part in the

filesystem for later use when signing quotes.

It optionally stores the attestation key certificate.

 Page 13

3.5. Epilogue

A careful reader may have observed that the server could have stored a raw attestation

public key. The server never walks the certificate chain back to its privacy CA root.

However, there are some advantages to this design.

First, an X.509 certificate is a convenient way for the server to store a public key. It

permits standard signature verification, while a proprietary public key format would

require extra code.

More interesting, the client and server now have an X.509 certificate for a TPM signing

key. This opens up other use cases, using the server privacy CA root certificate as a root

of trust.

• The enrollment server and the attestation server can be separate. The

enrollment sever sends the certificate to the client, and the client sends it to

the attestation server.

• The client or server can send the certificate to another attestation server,

avoiding the need to run this protocol more than once.

• The client can send the certificate to a recipient, and then use the signing key

for applications other than attestation.

• The client can locally use the key to certify other TPM keys, with a certificate

chain back to the server privacy CA root.

 Page 14

 Page 15

4. Quote Goals and Attack Model

A quote is essentially a signature over a client event log. There are two levels of

indirection:

1. Event log entries are hashed into the client PCRs.

2. PCRs are hashed into the data that is signed by the attestation key.

The server uses the quote signature to validate that the client event log is authentic and

current. It can then use the event log entries to establish trust in the client.

The client, as an attacker, wants to convince the server that a tampered event log is

authentic, or that a replay of a previous quote is current.

 Page 16

5. Quote Process

The process consists of six steps:

• Client requests a nonce

• Server supplies a nonce and PCR selection

• Client returns the quote data

• Server requests an event log

• Client returns the event log

• Server acknowledge

 Page 17

5.1. Client requests a nonce

1. The client sends the nonce request to the server. The request consists of:

• command - nonce

• hostname - client hostname

• user ID - the client account that generated the request (untrusted, for

reference)

5.2. Server supplies nonce and PCR selection

1. The server responds with a nonce and a bitmap of PCRs that the client should

quote.

The PCR selection is currently hard coded to "all PCRs". There is little

performance benefit to quoting fewer PCRs. The server can ignore those not of

interest.

• response - nonce

• nonce - a 32 byte nonce

• pcrselect - all PCRs

5.3. Client returns the quote data

1. The client runs the TPM2_Load() command to load its attestation key

2. The client runs the TPM2_Quote() command, supplying the nonce and PCR

selection, and signing with the loaded attestation key.

3. The client runs the TPM2_PCR_Read() command several times to read the

selected PCRs.

4. The client sends the quote to the server.

• command - quote

• hostname - the client host name

• pcr0 - pcr23

• quote data

• quote signature

• client boot time

 Page 18

The boot time permits a future optimization, where the server may not need to

request the entire event log if the client has not rebooted. This is more useful for

IMA event logs, because:

• The IMA log is far larger than the firmware event log.

• The IMA log is likely to change on every boot, because the event order

changes.

5.4. Server requests an event log

The server validates the quote, and then requests the event log.

1. The server retrieves the provisioned client attestation key X.509 certificate.

2. This certificate is used to verify the signature on the quote data.

3. The server reconstructs the quote data PCR digest from the PCRs. It matches the

result to that received from the client.

The server now trusts that the PCR values sent by the client are authentic.

4. The server matches its copy of the nonce to that in the quote data.

The server now trusts that the quote is fresh, not a replay of a previous quote.

5. The server sends a response to the client:

• response - quote

A future optimization can indicate whether the client should send an event log. If the

PCRs have not changed, the server does not need the current event log. This is the

typical case for firmware event logs, but will be important for IMA logs. The IMA logs

are also larger, making the complexity of this optimization worthwhile.

5.5. Client returns the event log

The client receives the quote response, indicating that the quote was valid. The client

next sends the event log.

As a future optimization, if the client did not reboot, the server can request an

incremental event log. This is not likely to be worthwhile for firmware logs, but can be

useful for the larger IMA logs.

1. The client sends a command to the server, requesting processing of the event log.

 Page 19

• command - biosentry

• hostname - the client host name

• nonce - the client nonce

• eventn - the event log entries

5.6. Server acknowledge

The server processes the event log.

1. The server matches the nonce against the nonce the client used for the quote.

The server uses the nonce as a sort of one time password. The client echoes the

quote nonce with the event log and the server checks for a match. This prevents a

rogue client from masquerading as a client and causing mischief by sending an

incorrect event log. It assumes that the nonce is a random value that cannot be

guessed by the rogue.

This becomes redundant if the client maintains a stateful connection to the server

through the process, or if the client uses an authenticated connection. The current

design permits an untrusted, stateless connection.

2. The server walks the event log, reconstructing PCR values. At each step, it

checks for a PCR match. When all PCRs match, the server is done processing.

There may be more entries in the event log than were used for the quote. The

server ignores entries after a match.

If a PCR first matches, but further event log entries cause a PCR to no longer

match, the server notes an invalid log. There may be more entries at the end of a

log, after all PCRs match, but not before then.

3. The server sends a final acknowledgement to the client.

• response - biosentry

 Page 20

	1. Introduction
	2. Provisioning Goals and Attack Model
	3. Provisioning Process
	3.1. Client Request
	3.2. Server Challenge
	3.3. Client Response
	3.4. Server Acknowledge
	3.5. Epilogue

	4. Quote Goals and Attack Model
	5. Quote Process
	5.1. Client requests a nonce
	5.2. Server supplies nonce and PCR selection
	5.3. Client returns the quote data
	5.4. Server requests an event log
	5.5. Client returns the event log
	5.6. Server acknowledge

